
Functional
programming

in JavaScript
ecosystem

@paulmillr

JS is a functional
language

JS is a functional
language

Sort of...

What do we
have today

What do we
have today

Proper anonymous
functions (λ)

Closures
ES5 array

extras
(map, filter, reduce...)

Is it enough?

Is it enough?

Yep.

Is it comfy?

Nope.

Is it comfy?

What’s wrong?

What’s wrong?
keywords

are too long

What’s wrong?

braces
everywhere

keywords
are too long

What’s wrong?

braces
everywhere

keywords
are too long

no static
types

What’s wrong?

braces
everywhere

keywords
are too long

no static
typesno proper tail calls

What’s wrong?
keywords

are too long

braces
everywhere

this scoping problems

no static
typesno proper tail calls

What’s wrong?
keywords

are too long

braces
everywhere

this scoping problems

no constants
no static

typesno proper tail calls

What’s wrong?
ES5 array extras
work alright in chaining
But

Prototype-based
== awful modularity
== collisions
== low performance

Solutions?

I want to write functionally
in JS ecosystem simply.
What are my options?

Solutions?
haskell-to-js ClojureScript

Solutions?
haskell-to-js ClojureScript

Compile to
very long files
hard to debug

Terrible
interoperability

Solutions?
Readable / reasonable

JS output?

Good interoperability?

Simple to debug?

CoffeeScript

coffeescript.org

http://coffeescript.org/
http://coffeescript.org/
http://coffeescript.org/
http://coffeescript.org/

CoffeeScript
Great small language

Compiles down to JS

#11 most used on GitHub

Used in 1000s of popular
projects

CoffeeScript

Better for functional
programming

Heals JS quirks

CoffeeScript
Implicit return

Short λ declaration

(a, b, c) -> a * b / c
function(a, b, c) {
 return a * b / c;
}

vs

Whitespace-significant
syntax

CoffeeScript

No curly braces

times 2, sum 1, 2, 3 # => 12

Round braces are optional

times(2, sum(1, 2, 3)) # => 12

CoffeeScript

List comprehensions

(a * 2 for a in [10, 20, 40])

CoffeeScript
this fixes via bound

functions

current = this
fn = =>
 log current == this
$(‘body’).on ‘click’, fn
Will log true

var current = this;
var fn = function() {
 log current == this;
};
$(‘body’).on ‘click’, fn
Will log false

CoffeeScript

Doesn’t heal all quirks
Brings own ones

CoffeeScript

Chaining is a lot readable
with short λs, but still terrible

Doesn’t work on Array-like objects
document.querySelectorAll(‘.user’)
 .map((x) -> x + 5)
 .maximum()
Defining methods on prototypes? No, thanks.

CoffeeScript

Must create λs even
for simple stuff

array
 .map((a) => a + 2)
 .filter((a) => a != 10)
 .reduce((a, b) => Math.min(a, b))

the only
real work

CoffeeScript
List comprehensions

aren’t real

Basically an infix for loop

(a * b for a in [1, 2, 3] for b in [10, 20, 40])
non flattened result, order is wrong
=> [[10, 20, 30], [20, 40, 60], [40, 80, 120]]

CoffeeScript

variable = 1
fn = ->
 variable = 2
fn()
console.log variable # => 2

Terrible variable
scoping

Roy

roy.brianmckenna.org

http://roy.brianmckenna.org
http://roy.brianmckenna.org
http://roy.brianmckenna.org
http://roy.brianmckenna.org

Roy
Type inference

Algebraic data types

Pattern matching

Monadic syntax

Roy

Not ready yet

Still a lot of stuff
it doesn’t have

LiveScript

gkz.github.com/
LiveScript/

http://gkz.github.com/LiveScript/
http://gkz.github.com/LiveScript/
http://gkz.github.com/LiveScript/
http://gkz.github.com/LiveScript/

LiveScript

+ =

+ =

+ =

Coco

Coco

LiveScript

Easy transition from Coffee
Improved readability
Perfect piping operators
 |> (F#)
 <| (F#) ($ in Haskell)

LiveScript

Standard library
(prelude.ls)

gkz.github.com/
prelude-ls/

Inspired by prelude.hs

http://gkz.github.com/prelude-ls/
http://gkz.github.com/prelude-ls/
http://gkz.github.com/prelude-ls/
http://gkz.github.com/prelude-ls/

LiveScript
Partially applied operators

and member access
array
 |> map (+ 2)
 |> filter (!= 10)
 |> maximum

LiveScript
Compile-time consants
Also, compiler flag that

make all vars consts

const string = ‘hello’
string = 5710
=> Error

LiveScript
Improved var scoping

a = 1
do ->
 a = 2
a # => still 1

LiveScript
Improved operators

associativity
unique pulls .length
unique node or not empty node

(unique pulls).length
(unique node) or not (empty node)

instead of coffee’s

LiveScript
Real list comprehensions

[x ** y for x in [10, 20] for y in [2, 3]]
=> [100, 1000, 400, 800]

LiveScript
Pattern matching

take(n, [x, ...xs]:list) =
 | n <= 0 => []
 | empty list => []
 | otherwise => [x] +++ take n - 1, xs

LiveScript
Simple currying

times = (x, y) --> x * y
times 2, 3 # => 6
double = times 2
double 5 # => 10

LiveScript

Async callback flattening
syntax

error <- fs.write-file path, data

LiveScript
Is it ready to use today?

LiveScript
Is it ready to use today?

Yep!
1.0.0 will be released

later this week.

LiveScript

Relatively simple

Debugging

Will be super simple with
source maps (2012)

LiveScript

Sure!

HTML5 apps

Including builders that
auto-compile your apps

without headache
(Brunch.io).

LiveScript

Yep.

Node.js

Just add pre-publish
hook to `package.json`

Compare

Compare

users
 |> map (.age)
 |> filter (> 10)
 |> maximum

users
 .map((u) -> u.age)
 .filter((a) -> a > 10)
 .reduce (a, b) ->
 Math.max a, b

users
 .map(function(u) {return u.age})
 .filter(function(a) {return a > 10})
 .reduce(function(a, b) {
 return Math.max(a, b)
 });

JS

Coffee
LiveScript

(w/prelude)

Compare

Coffee

LiveScript
elems = document.query-selector-all '.listing .meta a:nth-child(3)'
pulls = elems |> map (.inner-text)
text = "Total #{pulls.length} pull requests in #{unique pulls .length} repos."

elems = [].slice.call document.querySelectorAll '.listing .meta a:nth-child(3)'
pulls = elems.map (elem) -> elem.innerText
unique = elems.reduce (a, b) ->
 a.push(b) if b not in a
 a
text = "Total #{pulls.length} pull requests in #{(unique pulls).length} repos."

JS → 14 LOC

Compare
LiveScript

quick-sort = ([x, ...xs]:list) ->
 | empty list => []
 | otherwise =>
 [left, right] = partition (<= x), xs
 (quick-sort left) +++ [x] +++ (quick-sort right)

gist.github.com/
3074009

https://gist.github.com/3074009
https://gist.github.com/3074009
https://gist.github.com/3074009
https://gist.github.com/3074009

Compare

JSCoffee

LiveScript
quick-sort = ([x, ...xs]:list) ->
 | empty list => []
 | otherwise =>
 [left, right] = partition (<= x), xs
 (quick-sort left) +++ [x] +++ (quick-sort right)

gist.github.com/
3074009

https://gist.github.com/3074009
https://gist.github.com/3074009
https://gist.github.com/3074009
https://gist.github.com/3074009

Future

ECMAScript 6

CoffeeScript 2.0

LiveScript.next

Future: ECMAScript 6

let block-scoped vars
const value checking
Short arrow functions
Tail call optimization
Real list comprehensions

New javascript standard

Future: ECMAScript 6

Still a lot of syntax garbage

((a, b) => {a + b})(2, 5));

(+) 2, 5

vs

Future: CoffeeScript 2

Same feature set

Proper compiler
design principles

github.com/michaelficarra/
CoffeeScriptRedux

https://github.com/michaelficarra/CoffeeScriptRedux
https://github.com/michaelficarra/CoffeeScriptRedux
https://github.com/michaelficarra/CoffeeScriptRedux
https://github.com/michaelficarra/CoffeeScriptRedux

Future: CoffeeScript 2

github.com/michaelficarra/
coffee-of-my-dreams

When it will be ready,
author will create
a functional fork

https://github.com/michaelficarra/coffee-of-my-dreams
https://github.com/michaelficarra/coffee-of-my-dreams
https://github.com/michaelficarra/coffee-of-my-dreams
https://github.com/michaelficarra/coffee-of-my-dreams

Future: LiveScript

Type inference

Pure annotations

Tail call optimization

So?

1. Use LiveScript
2. Wait for fork of Coffee 2.0

3. Wait for Roy

I want to write functionally
in JS ecosystem simply.
What are my options?

Thanks!
Paul Miller

paulmillr.com

@paulmillr

http://paulmillr.com
http://paulmillr.com
http://paulmillr.com
http://paulmillr.com

